Review recent advances in nanomaterials for high-performance Li–S batteries

James E. Knoop, Seongki Ahn*


研究成果: Review article査読

50 被引用数 (Scopus)


This article reviews nanotechnology as a practical solution for improving lithium-sulfur batteries. Lithium-sulfur batteries have been widely examined because sulfur has many advantageous properties such as a high crustal abundance, low environmental impact, low cost, high gravimetric (2600 W h kg−1) and volumetric (2800 W h L−1) energy densities, assuming complete conversion of sulfur to lithium sulfide (Li2S) upon lithiation. However, lithium-sulfur batteries have not yet reach commercialization due to demerits involving the formation of soluble lithium polysulfides (Li2Sn, n = 3–8), low electrical conductivity, and low loading density of sulfur. These issues arise mainly due to the polysulfide shuttle phenomenon and the inherent insulating nature of sulfur. To overcome these issues, strategies have been pursued using nanotechnology applied to porous carbon nanocomposites, hollow one-dimensional carbon nanomaterials, graphene nanocomposites, and three-dimensional carbon nanostructured matrices. This paper aims to review various solutions pertaining to the role of nanotechnology in synthesizing nanoscale and nanostructured materials for advanced and high-performance lithium–sulfur batteries. Furthermore, we highlight perspective research directions for commercialization of lithium–sulfur batteries as a major power source for electric vehicles and large-scale electric energy storage.

ジャーナルJournal of Energy Chemistry
出版ステータスPublished - 2020 8月

ASJC Scopus subject areas

  • 燃料技術
  • エネルギー工学および電力技術
  • エネルギー(その他)
  • 電気化学


「Review recent advances in nanomaterials for high-performance Li–S batteries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。