Rigged Hilbert space approach for non-Hermitian systems with positive definite metric

S. Ohmori*, J. Takahashi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We investigate Dirac's bra-ket formalism based on a rigged Hilbert space for a non-Hermitian quantum system with a positive-definite metric. First, the rigged Hilbert space, characterized by a positive-definite metric, is established. With the aid of the nuclear spectral theorem for the obtained rigged Hilbert space, spectral expansions are shown for the bra-kets by the generalized eigenvectors of a quasi-Hermitian operator. The spectral expansions are utilized to endow the complete bi-orthogonal system and the transformation theory between the Hermitian and non-Hermitian systems. As an example of application, we show a specific description of our rigged Hilbert space treatment for some parity-time symmetrical quantum systems.

本文言語English
論文番号123503
ジャーナルJournal of Mathematical Physics
63
12
DOI
出版ステータスPublished - 2022 12月 1

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Rigged Hilbert space approach for non-Hermitian systems with positive definite metric」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル