Road-illuminance level inference across road networks based on Bayesian analysis

研究成果: Conference contribution

抄録

This paper proposes a road-illuminance level inference method based on the naive Bayesian analysis. We investigate quantities and types of road lights and landmarks with a large set of roads in real environments and reorganize them into two safety classes, safe or unsafe, with seven road attributes. Then we carry out data learning using three types of datasets according to different groups of the road attributes. Experimental results demonstrate that the proposed method successfully classifies a set of roads with seven attributes into safe ones and unsafe ones with the accuracy of more than 85%, which is superior to other machine-learning based methods and a manual-based method.

本文言語English
ホスト出版物のタイトル2018 IEEE International Conference on Consumer Electronics, ICCE 2018
編集者Saraju P. Mohanty, Peter Corcoran, Hai Li, Anirban Sengupta, Jong-Hyouk Lee
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1-6
ページ数6
ISBN(電子版)9781538630259
DOI
出版ステータスPublished - 2018 3月 26
イベント2018 IEEE International Conference on Consumer Electronics, ICCE 2018 - Las Vegas, United States
継続期間: 2018 1月 122018 1月 14

出版物シリーズ

名前2018 IEEE International Conference on Consumer Electronics, ICCE 2018
2018-January

Other

Other2018 IEEE International Conference on Consumer Electronics, ICCE 2018
国/地域United States
CityLas Vegas
Period18/1/1218/1/14

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学
  • メディア記述

フィンガープリント

「Road-illuminance level inference across road networks based on Bayesian analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル