Robust and flexible platform for directed evolution of yeast genetic switches

Masahiro Tominaga, Kenta Nozaki, Daisuke Umeno, Jun Ishii*, Akihiko Kondo


研究成果: Article査読

13 被引用数 (Scopus)


A wide repertoire of genetic switches has accelerated prokaryotic synthetic biology, while eukaryotic synthetic biology has lagged in the model organism Saccharomyces cerevisiae. Eukaryotic genetic switches are larger and more complex than prokaryotic ones, complicating the rational design and evolution of them. Here, we present a robust workflow for the creation and evolution of yeast genetic switches. The selector system was designed so that both ON- and OFF-state selection of genetic switches is completed solely by liquid handling, and it enabled parallel screen/selection of different motifs with different selection conditions. Because selection threshold of both ON- and OFF-state selection can be flexibly tuned, the desired selection conditions can be rapidly pinned down for individual directed evolution experiments without a prior knowledge either on the library population. The system’s utility was demonstrated using 20 independent directed evolution experiments, yielding genetic switches with elevated inducer sensitivities, inverted switching behaviours, sensory functions, and improved signal-to-noise ratio (>100-fold induction). The resulting yeast genetic switches were readily integrated, in a plug-and-play manner, into an AND-gated carotenoid biosynthesis pathway.

ジャーナルNature communications
出版ステータスPublished - 2021 12月 1

ASJC Scopus subject areas

  • 化学一般
  • 生化学、遺伝学、分子生物学一般
  • 一般
  • 物理学および天文学一般


「Robust and flexible platform for directed evolution of yeast genetic switches」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。