抄録
A novel series of ammonium-containing copolymers (QPAF-4) were designed and synthesized as anion exchange membranes for alkaline fuel cell applications. The copolymers were prepared via a nickel promoted polycondensation reaction with high molecular weights (Mw = 72.7-276.4 kDa as precursors) and were composed of perfluoroalkylene and fluorenyl groups with pendant ammonium groups. The QPAF-4 membrane with optimized copolymer composition and ion exchange capacity exhibited high hydroxide ion conductivity (86.2 mS cm-1 in water at 80 °C) and excellent mechanical properties (large elongation at break = 269%). A severe alkaline stability test of the QPAF-4 membranes in 1 M KOH at 80 °C for 1000 h and the post-test analyses of the 1H NMR spectra, solubility, and mechanical properties revealed minor, or no, changes in the chemical structure and properties. Alkaline fuel cells using the QPAF-4 membrane were operated using hydrazine as a fuel and oxygen or air as oxidant to achieve the high maximum power density of 515 mW cm-2. The durability of the membrane was also confirmed in the operating fuel cell at a constant current density for longer than 1000 h.
本文言語 | English |
---|---|
ページ(範囲) | 24804-24812 |
ページ数 | 9 |
ジャーナル | Journal of Materials Chemistry A |
巻 | 5 |
号 | 47 |
DOI | |
出版ステータス | Published - 2017 |
外部発表 | はい |
ASJC Scopus subject areas
- 化学 (全般)
- 再生可能エネルギー、持続可能性、環境
- 材料科学(全般)