Robust causality test of infinite variance processes

Fumiya Akashi*, Masanobu Taniguchi, Anna Clara Monti

*この研究の対応する著者

研究成果: Article査読

抄録

This paper develops a robust causality test for time series with infinite variance innovation processes. First, we introduce a measure of dependence for vector nonparametric linear processes, and derive the asymptotic distribution of the test statistic by Taniguchi et al. (1996) in the infinite variance case. Second, we construct a weighted version of the generalized empirical likelihood (GEL) test statistic, called the self-weighted GEL statistic in the time domain. The limiting distribution of the self-weighted GEL test statistic is shown to be the usual chi-squared one regardless of whether the model has finite variance or not. Some simulation experiments illustrate satisfactory finite sample performances of the proposed test.

本文言語English
ページ(範囲)235-245
ページ数11
ジャーナルJournal of Econometrics
216
1
DOI
出版ステータスPublished - 2020 5月

ASJC Scopus subject areas

  • 経済学、計量経済学

フィンガープリント

「Robust causality test of infinite variance processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル