Robust UAV Position and Attitude Estimation using Multiple GNSS Receivers for Laser-based 3D Mapping

Taro Suzuki, Daichi Inoue, Yoshiharu Amano

研究成果: Conference contribution

8 被引用数 (Scopus)

抄録

Small-sized unmanned aerial vehicles (UAVs) have been widely investigated for use in a variety of applications such as remote sensing and aerial surveying. Direct three-dimensional (3D) mapping using a small-sized UAV equipped with a laser scanner is required for numerous remote sensing applications. In direct 3D mapping, the precise information about the position and attitude of the UAV is necessary for constructing 3D maps. In this study, we propose a novel and robust technique for estimating the position and attitude of small-sized UAVs by employing multiple low-cost and light-weight global navigation satellite system (GNSS) antennas/receivers. Using the 'redundancy'' of multiple GNSS receivers, we enhance the performance of real-time kinematic (RTK)-GNSS by employing single-frequency GNSS receivers. This method consists of two approaches: hybrid GNSS fix solutions and consistency examination of the GNSS signal strength. The fix rate of RTK-GNSS using single-frequency GNSS receivers can be highly enhanced to combine multiple RTK-GNSS to fix solutions in the multiple antennas. In addition, positioning accuracy and fix rate can be further enhanced to detect multipath signals by using multiple GNSS antennas. In this study, we developed a prototype UAV that is equipped with six GNSS antennas /receivers. From the static test results, we conclude that the proposed technique can enhance the accuracy of the position and attitude estimation in multipath environments. From the flight test, the proposed system could generate a 3D map with an accuracy of 5 cm.

本文言語English
ホスト出版物のタイトル2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
出版社Institute of Electrical and Electronics Engineers Inc.
ページ4402-4408
ページ数7
ISBN(電子版)9781728140049
DOI
出版ステータスPublished - 2019 11月
イベント2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019 - Macau, China
継続期間: 2019 11月 32019 11月 8

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

Conference

Conference2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
国/地域China
CityMacau
Period19/11/319/11/8

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Robust UAV Position and Attitude Estimation using Multiple GNSS Receivers for Laser-based 3D Mapping」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル