TY - JOUR
T1 - SAC and SAC-CI calculations of excitation and circular dichroism spectra of straight-chain and cyclic dichalcogens
AU - Seino, Junji
AU - Honda, Yasushi
AU - Hada, Masahiko
AU - Nakatsuji, Hiroshi
PY - 2006/8/24
Y1 - 2006/8/24
N2 - Accurate quantum-chemical calculations of the excitation energies and the rotatory strengths of dichalcogens R-Ch-Ch-R (Ch = S, Se, Te) were carried out with the symmetry adapted cluster (SAC) and SAC-configuration interaction (CI) methods. A series of straight-chain molecules (dihydrogen dichalcogenide, dimethyl dichalcogenide, and (+)-bis(2-methylbutyl) dichalcogenide) and one cyclic molecule (2,3-(R,R)-dichalcogenadecalin) were adopted for comparative analysis. The calculated excitation and circular dichroism (CD) spectra were in good agreement with experimental ones (Laur, P. H. A. In Proceedings of the Third International Symposium on Organic Selenium and Tellurium Compounds; Cagniant, D., Kirsch, G., Eds.; Universite de Metz: Metz, 1979; pp 219-299) within 0.3 eV. The fitting CD spectra also reasonably reproduced the experimental ones. In all the molecules adopted, the first and second lowest bands were assigned to the n-σ*(Ch-Ch) transition and the third and fourth lowest bands to the n-σ*(Ch-R) transition. The first and second lowest bands apparently depended on the R-Ch-Ch-R dihedral angle, suggesting that the orbital energies of two σ*(Ch-Ch) change with the R-Ch-Ch-R dihedral angle. This calculated trend agrees with two empirical rules: the C2 rule and the quadrant rule.
AB - Accurate quantum-chemical calculations of the excitation energies and the rotatory strengths of dichalcogens R-Ch-Ch-R (Ch = S, Se, Te) were carried out with the symmetry adapted cluster (SAC) and SAC-configuration interaction (CI) methods. A series of straight-chain molecules (dihydrogen dichalcogenide, dimethyl dichalcogenide, and (+)-bis(2-methylbutyl) dichalcogenide) and one cyclic molecule (2,3-(R,R)-dichalcogenadecalin) were adopted for comparative analysis. The calculated excitation and circular dichroism (CD) spectra were in good agreement with experimental ones (Laur, P. H. A. In Proceedings of the Third International Symposium on Organic Selenium and Tellurium Compounds; Cagniant, D., Kirsch, G., Eds.; Universite de Metz: Metz, 1979; pp 219-299) within 0.3 eV. The fitting CD spectra also reasonably reproduced the experimental ones. In all the molecules adopted, the first and second lowest bands were assigned to the n-σ*(Ch-Ch) transition and the third and fourth lowest bands to the n-σ*(Ch-R) transition. The first and second lowest bands apparently depended on the R-Ch-Ch-R dihedral angle, suggesting that the orbital energies of two σ*(Ch-Ch) change with the R-Ch-Ch-R dihedral angle. This calculated trend agrees with two empirical rules: the C2 rule and the quadrant rule.
UR - http://www.scopus.com/inward/record.url?scp=33748525537&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748525537&partnerID=8YFLogxK
U2 - 10.1021/jp0627271
DO - 10.1021/jp0627271
M3 - Article
C2 - 16913679
AN - SCOPUS:33748525537
SN - 1089-5639
VL - 110
SP - 10053
EP - 10062
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 33
ER -