SCA-LFD: Side-Channel Analysis-Based Load Forecasting Disturbance in the Energy Internet

Li Ding, Jun Wu*, Changlian Li, Alireza Jolfaei, Xi Zheng

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

The energy Internet (EI) equipment may face threats that attackers poison federated learning (FL) models to disturb electricity load forecasting. To mitigate this vulnerability, it is important to study load forecasting disturbance approaches. This article proposes a side-channel analysis (SCA)-based disturbance approach. First, we design an FL SCA scheme to extract power information from the FL chip running forecasting model. Second, we propose an FL data speculation method using an optimized convolutional neural network trained with SCA information. Third, we design a label-flipping-based poisoning scheme with speculated data characteristics for load forecasting disturbance. Experimental results show attackers can successfully poison and disturb FL-based load forecasting. The average accuracy of EI load data speculation is 99.8%. This work is the first to study EI load forecasting disturbance from an SCA perspective.

本文言語English
ページ(範囲)3199-3208
ページ数10
ジャーナルIEEE Transactions on Industrial Electronics
70
3
DOI
出版ステータスPublished - 2023 3月 1
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「SCA-LFD: Side-Channel Analysis-Based Load Forecasting Disturbance in the Energy Internet」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル