TY - JOUR
T1 - Scapular rotation to attain the peak shoulder external rotation in tennis serve
AU - Konda, Shoji
AU - Yanai, Toshimasa
AU - Sakurai, Shinji
PY - 2010/9
Y1 - 2010/9
N2 - PURPOSE: The purposes of this study were (a) to describe the detailed movements of the shoulder complex during the cocking phase in tennis serve and (b) to determine the contribution of the scapular rotation to the peak shoulder external rotation attained at the end of the cocking phase. METHOD: Twenty tennis players performed flat tennis serves with the maximum effort, and three-dimensional kinematic data of the thorax, scapula, and humerus of the dominant side were recorded by an electromagnetic tracking device (Liberty; Polhemus) at 240 Hz. The humeral rotation with respect to the thorax (named as the resultant shoulder rotation) was decomposed into the scapular rotation with respect to the thorax and the humeral rotation with respect to the scapula (named as the glenohumeral rotation). The scapular rotation that contributed to attain the peak resultant shoulder external rotation was quantitatively determined, and the ratio of the glenohumeral external rotation to the scapular rotation that contributed to attain the peak resultant shoulder external rotation was computed to represent the scapulohumeral rhythm for shoulder external rotation. RESULTS: Of the three components of scapular rotations, the scapular posterior tilt was the primary component that contributed to the attainment of the peak resultant shoulder external rotation. The scapulohumeral rhythm for shoulder external rotation (scapular posterior tilt-glenohumeral external rotation) exhibited during the backswing phase was 1:2.3. CONCLUSIONS: The peak resultant shoulder external rotation was generated by a synchronized combination of the scapular posterior tilt and glenohumeral external rotation. A consistent pattern of three phases of the scapular posterior tilt and the glenohumeral external rotation that could be accurately modeled by three linear regressions was observed in preparation for the peak shoulder external rotation in tennis serve.
AB - PURPOSE: The purposes of this study were (a) to describe the detailed movements of the shoulder complex during the cocking phase in tennis serve and (b) to determine the contribution of the scapular rotation to the peak shoulder external rotation attained at the end of the cocking phase. METHOD: Twenty tennis players performed flat tennis serves with the maximum effort, and three-dimensional kinematic data of the thorax, scapula, and humerus of the dominant side were recorded by an electromagnetic tracking device (Liberty; Polhemus) at 240 Hz. The humeral rotation with respect to the thorax (named as the resultant shoulder rotation) was decomposed into the scapular rotation with respect to the thorax and the humeral rotation with respect to the scapula (named as the glenohumeral rotation). The scapular rotation that contributed to attain the peak resultant shoulder external rotation was quantitatively determined, and the ratio of the glenohumeral external rotation to the scapular rotation that contributed to attain the peak resultant shoulder external rotation was computed to represent the scapulohumeral rhythm for shoulder external rotation. RESULTS: Of the three components of scapular rotations, the scapular posterior tilt was the primary component that contributed to the attainment of the peak resultant shoulder external rotation. The scapulohumeral rhythm for shoulder external rotation (scapular posterior tilt-glenohumeral external rotation) exhibited during the backswing phase was 1:2.3. CONCLUSIONS: The peak resultant shoulder external rotation was generated by a synchronized combination of the scapular posterior tilt and glenohumeral external rotation. A consistent pattern of three phases of the scapular posterior tilt and the glenohumeral external rotation that could be accurately modeled by three linear regressions was observed in preparation for the peak shoulder external rotation in tennis serve.
KW - BIOMECHANICS
KW - GLENOHUMERAL JOINT
KW - SCAPULOHUMERAL RHYTHM
KW - THREE-DIMENSIONAL KINEMATICS
UR - http://www.scopus.com/inward/record.url?scp=77956050847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956050847&partnerID=8YFLogxK
U2 - 10.1249/MSS.0b013e3181d64103
DO - 10.1249/MSS.0b013e3181d64103
M3 - Article
C2 - 20142775
AN - SCOPUS:77956050847
SN - 0195-9131
VL - 42
SP - 1745
EP - 1753
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 9
ER -