Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian

Takeshi Ikeda*

*この研究の対応する著者

研究成果: Article査読

24 被引用数 (Scopus)

抄録

Let LGn denote the Lagrangian Grassmannian parametrizing maximal isotropic (Lagrangian) subspaces of a fixed symplectic vector space of dimension 2n. For each strict partition λ = (λ1, ..., λk) with λ1 ≤ n there is a Schubert variety X (λ). Let T denote a maximal torus of the symplectic group acting on LGn. Consider the T-equivariant cohomology of LGn and the T-equivariant fundamental class σ (λ) of X (λ). The main result of the present paper is an explicit formula for the restriction of the class σ (λ) to any torus fixed point. The formula is written in terms of factorial analogue of the Schur Q-function, introduced by Ivanov. As a corollary to the restriction formula, we obtain an equivariant version of the Giambelli-type formula for LGn. As another consequence of the main result, we obtained a presentation of the ring HT* (LGn).

本文言語English
ページ(範囲)1-23
ページ数23
ジャーナルAdvances in Mathematics
215
1
DOI
出版ステータスPublished - 2007 10月 20
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル