TY - JOUR
T1 - Schwinger-Dyson analysis of dynamical symmetry breaking on a brane with bulk Yang-Mills theory
AU - Abe, Hiroyuki
AU - Inagaki, Tomohiro
PY - 2002/10/1
Y1 - 2002/10/1
N2 - The dynamically generated fermion mass is investigated in a flat brane world with (4+δ)-dimensional bulk space-time, and in the Randall-Sundrum (RS) brane world. We consider the bulk Yang-Mills theory interacting with a fermion confined on a four-dimensional brane. Based on the effective theory below a reduced cutoff scale on the brane, we formulate the Schwinger-Dyson equation of the brane fermion propagator. By using the improved ladder approximation we numerically solve the Schwinger-Dyson equation and find that the dynamical fermion mass is near the reduced cutoff scale on the brane for the flat brane world with (Formula presented) and for the RS brane world. In the RS brane world Kaluza-Klein excited modes of the bulk gauge field localize around the (Formula presented) brane and this enhances dynamical symmetry breaking on the brane. The decay constant of the fermion and the antifermion composite operator can be taken to be of the order of the electroweak scale, much smaller than the Planck scale. Therefore the electroweak mass scale can be realized from only the Planck scale in the RS brane world due to fermion and antifermion pair condensation. That is a dynamical realization of the Randall-Sundrum model which solves the weak-Planck hierarchy problem.
AB - The dynamically generated fermion mass is investigated in a flat brane world with (4+δ)-dimensional bulk space-time, and in the Randall-Sundrum (RS) brane world. We consider the bulk Yang-Mills theory interacting with a fermion confined on a four-dimensional brane. Based on the effective theory below a reduced cutoff scale on the brane, we formulate the Schwinger-Dyson equation of the brane fermion propagator. By using the improved ladder approximation we numerically solve the Schwinger-Dyson equation and find that the dynamical fermion mass is near the reduced cutoff scale on the brane for the flat brane world with (Formula presented) and for the RS brane world. In the RS brane world Kaluza-Klein excited modes of the bulk gauge field localize around the (Formula presented) brane and this enhances dynamical symmetry breaking on the brane. The decay constant of the fermion and the antifermion composite operator can be taken to be of the order of the electroweak scale, much smaller than the Planck scale. Therefore the electroweak mass scale can be realized from only the Planck scale in the RS brane world due to fermion and antifermion pair condensation. That is a dynamical realization of the Randall-Sundrum model which solves the weak-Planck hierarchy problem.
UR - http://www.scopus.com/inward/record.url?scp=18344404420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18344404420&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.66.085001
DO - 10.1103/PhysRevD.66.085001
M3 - Article
AN - SCOPUS:18344404420
SN - 1550-7998
VL - 66
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 8
M1 - 085001
ER -