Search for dark matter with the antares neutrino telescope

H. Motz*


研究成果: Conference contribution


ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RESearch) is the largest neutrino detector currently operating in the Northern hemisphere. The detection principle relies on the observation of Cerenkov light emitted by muons resulting from charged current neutrino interactions in the water surrounding the detector and the seafloor below. The detector, which was completed in May 2008, consists of twelve lines (each housing 75 photomultipliers), placed at a depth of about 2480 meters 40 km off the coast of Toulon, France. The telescope is built to search for astrophysical neutrino point sources and for neutrinos created in self-annihilation of Dark-Matter particles. A likely source of such neutrino emission would be the Sun, where Dark Matter particles are expected to accumulate. Predictions of the neutrino flux originating from the Sun have been made based on the minimal Supergravity (mSugra) model including the effect of neutrino oscillations. Within mSugra the lightest supersymmetric particle, if a neutralino, is a possible candidate for cold Dark Matter. Using the general features of ANTARES in the energy range from 10 GeV to 400 GeV a prediction for exclusion limits for three years of datataking has been calculated.

ホスト出版物のタイトルDark Energy and Dark Matter - Observations, Experiments and Theories
編集者E. Pecontal, T. Buchert, Di Stefano, Y. Copin
出版ステータスPublished - 2009


名前EAS Publications Series

ASJC Scopus subject areas

  • 天文学と天体物理学
  • 工学(全般)
  • 宇宙惑星科学


「Search for dark matter with the antares neutrino telescope」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。