Secure statistical analysis using RLWE-based homomorphic encryption

Masaya Yasuda*, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, Takeshi Koshiba

*この研究の対応する著者

研究成果: Conference contribution

19 被引用数 (Scopus)

抄録

Homomorphic encryption enables various calculations while preserving the data confidentiality. Here we apply the homomorphic encryption scheme proposed by Brakerski and Vaikuntanathan (CRYPTO 2011) to secure statistical analysis between two variables. For reduction of ciphertext size and practical performance, we propose a method to pack multiple integers into a few ciphertexts so that it enables efficient computation over the packed ciphertexts. Our packing method is based on Yasuda et al.’s one (DPM 2013). While their method gives efficient secure computation only for small integers, our modification is effective for larger integers. Our implementation shows that our method is faster than the state-of-the-art work. Specifically, for one million integers of 16 bits (resp. 128 bits), it takes about 20 minutes (resp. 3.6 hours) for secure covariance and correlation on an Intel Core i7-3770 3.40 GHz CPU.

本文言語English
ホスト出版物のタイトルInformation Security and Privacy - 20th Australasian Conference, ACISP 2015, Proceedings
編集者Ernest Foo, Douglas Stebila
出版社Springer Verlag
ページ471-487
ページ数17
ISBN(印刷版)9783319199610
DOI
出版ステータスPublished - 2015
外部発表はい
イベント20th Australasian Conference on Information Security and Privacy, ACISP 2015 - Brisbane, Australia
継続期間: 2015 6月 292015 7月 1

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9144
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other20th Australasian Conference on Information Security and Privacy, ACISP 2015
国/地域Australia
CityBrisbane
Period15/6/2915/7/1

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Secure statistical analysis using RLWE-based homomorphic encryption」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル