Selection of a platinum-binding sequence in a loop of a four-helix bundle protein

Sota Yagi, Satoshi Akanuma, Asumi Kaji, Hiroya Niiro, Hayato Akiyama, Tatsuya Uchida, Akihiko Yamagishi*

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Protein–metal hybrids are functional materials with various industrial applications. For example, a redox enzyme immobilized on a platinum electrode is a key component of some biofuel cells and biosensors. To create these hybrid materials, protein molecules are bound to metal surfaces. Here, we report the selection of a novel platinum-binding sequence in a loop of a four-helix bundle protein, the Lac repressor four-helix protein (LARFH), an artificial protein in which four identical α-helices are connected via three identical loops. We created a genetic library in which the Ser-Gly-Gln-Gly-Gly-Ser sequence within the first inter-helical loop of LARFH was semi-randomly mutated. The library was then subjected to selection for platinum-binding affinity by using the T7 phage display method. The majority of the selected variants contained the Tyr-Lys-Arg-Gly-Tyr-Lys (YKRGYK) sequence in their randomized segment. We characterized the platinum-binding properties of mutant LARFH by using quartz crystal microbalance analysis. Mutant LARFH seemed to interact with platinum through its loop containing the YKRGYK sequence, as judged by the estimated exclusive area occupied by a single molecule. Furthermore, a 10-residue peptide containing the YKRGYK sequence bound to platinum with reasonably high affinity and basic side chains in the peptide were crucial in mediating this interaction. In conclusion, we have identified an amino acid sequence, YKRGYK, in the loop of a helix-loop-helix motif that shows high platinum-binding affinity. This sequence could be grafted into loops of other polypeptides as an approach to immobilize proteins on platinum electrodes for use as biosensors among other applications.

本文言語English
ページ(範囲)192-198
ページ数7
ジャーナルJournal of Bioscience and Bioengineering
125
2
DOI
出版ステータスPublished - 2018 2月

ASJC Scopus subject areas

  • バイオテクノロジー
  • バイオエンジニアリング
  • 応用微生物学とバイオテクノロジー

フィンガープリント

「Selection of a platinum-binding sequence in a loop of a four-helix bundle protein」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル