TY - JOUR
T1 - Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts
AU - Ogo, Shuhei
AU - Onda, Ayumu
AU - Yanagisawa, Kazumichi
PY - 2011/7/31
Y1 - 2011/7/31
N2 - We previously reported the ability of strontium hydroxyapatite to catalyze the conversion of ethanol into 1-butanol with higher selectivity than that reported for calcium hydroxyapatite catalysts. In the present study, we investigated the catalytic conversions of ethanol over substituted hydroxyapatites, such as Sr10(PO4)6(OH) 2, Ca10(VO4)6(OH)2, Sr10(VO4)6(OH)2, and Ca 10(PO4)6(OH)2, and their solid solutions, such as Ca10 - zSrz(PO4) 6(OH)2, Ca10(PO4) 6 - x(VO4)6 - x(OH)2, and Sr 10(PO4)6 - x(VO4) 6 - x(OH)2, were investigated. The strontium phosphate hydroxyapatite [Sr10(PO4)6(OH)2: Sr-P] exhibited the highest 1-butanol selectivity among the tested catalysts in the region of the ethanol conversions between 1 and 24%. The reaction mechanism of 1-butanol formation over the Sr-P hydroxyapatite catalyst includes the dehydrogenation of ethanol into acetaldehyde, the aldol condensation of acetaldehyde into crotonaldehyde, and the hydrogenations of crotonaldehyde, 2-buten-1-ol, and/or butyraldehyde into 1-butanol. The Sr-P hydroxyapatite catalyst showed high selectivity into crotonaldehyde in the aldol condensation of acetaldehyde and inhibited the coking in the hydrogen transfer reaction of 2-buten-1-ol into 1-butanol, which might be reasons why the Sr-P hydroxyapatite catalyst showed the high 1-butanol selectivity in the catalytic conversion of ethanol.
AB - We previously reported the ability of strontium hydroxyapatite to catalyze the conversion of ethanol into 1-butanol with higher selectivity than that reported for calcium hydroxyapatite catalysts. In the present study, we investigated the catalytic conversions of ethanol over substituted hydroxyapatites, such as Sr10(PO4)6(OH) 2, Ca10(VO4)6(OH)2, Sr10(VO4)6(OH)2, and Ca 10(PO4)6(OH)2, and their solid solutions, such as Ca10 - zSrz(PO4) 6(OH)2, Ca10(PO4) 6 - x(VO4)6 - x(OH)2, and Sr 10(PO4)6 - x(VO4) 6 - x(OH)2, were investigated. The strontium phosphate hydroxyapatite [Sr10(PO4)6(OH)2: Sr-P] exhibited the highest 1-butanol selectivity among the tested catalysts in the region of the ethanol conversions between 1 and 24%. The reaction mechanism of 1-butanol formation over the Sr-P hydroxyapatite catalyst includes the dehydrogenation of ethanol into acetaldehyde, the aldol condensation of acetaldehyde into crotonaldehyde, and the hydrogenations of crotonaldehyde, 2-buten-1-ol, and/or butyraldehyde into 1-butanol. The Sr-P hydroxyapatite catalyst showed high selectivity into crotonaldehyde in the aldol condensation of acetaldehyde and inhibited the coking in the hydrogen transfer reaction of 2-buten-1-ol into 1-butanol, which might be reasons why the Sr-P hydroxyapatite catalyst showed the high 1-butanol selectivity in the catalytic conversion of ethanol.
KW - 1-Butanol
KW - Ethanol
KW - Strontium phosphate hydroxyapatite
UR - http://www.scopus.com/inward/record.url?scp=79960251803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960251803&partnerID=8YFLogxK
U2 - 10.1016/j.apcata.2011.06.006
DO - 10.1016/j.apcata.2011.06.006
M3 - Article
AN - SCOPUS:79960251803
SN - 0926-860X
VL - 402
SP - 188
EP - 195
JO - Applied Catalysis A: General
JF - Applied Catalysis A: General
IS - 1-2
ER -