Self-organization of object features representing motion using Multiple Timescales Recurrent Neural Network

Shun Nishide*, Jun Tani, Hiroshi G. Okuno, Tetsuya Ogata

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Affordance theory suggests that humans recognize the environment based on invariants. Invariants are features that describe the environment offering behavioral information to humans. Two types of invariants exist, structural invariants and transformational invariants. In our previous paper, we developed a method that self- organizes transformational invariants, or motion features, from camera images based on robot's experiences. The model used a bi-directional technique combining a recurrent neural network for dynamics learning, namely Recurrent Neural Network with Parametric Bias (RNNPB), and a hierarchical neural network for feature extraction. The bi-directional training method developed in the previous work was effective in clustering the motion of objects, but the analysis did not give good segregation results of the self-organized features (transformational invariants) among different motion types. In this paper, we present a refined model which integrates dynamics learning and feature extraction in a single model. The refined model is comprised of Multiple Timescales Recurrent Neural Network (MTRNN), which possesses better learning capability than RNNPB. Self-organization result of four types of motions have proved the model's capability to create clusters of object motions. The analysis showed that the model extracted feature sequences with different characteristics for four object motion types.

本文言語English
ホスト出版物のタイトル2012 International Joint Conference on Neural Networks, IJCNN 2012
DOI
出版ステータスPublished - 2012
外部発表はい
イベント2012 Annual International Joint Conference on Neural Networks, IJCNN 2012, Part of the 2012 IEEE World Congress on Computational Intelligence, WCCI 2012 - Brisbane, QLD, Australia
継続期間: 2012 6月 102012 6月 15

出版物シリーズ

名前Proceedings of the International Joint Conference on Neural Networks

Conference

Conference2012 Annual International Joint Conference on Neural Networks, IJCNN 2012, Part of the 2012 IEEE World Congress on Computational Intelligence, WCCI 2012
国/地域Australia
CityBrisbane, QLD
Period12/6/1012/6/15

ASJC Scopus subject areas

  • ソフトウェア
  • 人工知能

フィンガープリント

「Self-organization of object features representing motion using Multiple Timescales Recurrent Neural Network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル