Self-organized criticality resulting from minimization of perpetual disequilibration

Keisuke Ito*, Yukio Pegio Gunji

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

A bootstrapping system is proposed in order to describe nonlogical properties of living systems, in which the velocity of observation propagation is finite. A cellular automaton (CA) model of the system combines two logics which are the a priori non-Boolean logic and the a posteriori Boolean logic. Because of inconsistency between the two logics, the system evolves perpetually generating disequilibrium and perpetually equilibrating the generated disequilibrium. The system tends to self-organize to the border between order and disorder, and shows critical behaviours as class IV CA. Although the critical behaviors of the two systems are similar, the bootstrapping system has twice stronger undecidability than class IV CA or edge of chaos dynamics. It is stressed that real living systems are not computable and should be described by strongly undecidable systems.

本文言語English
ページ(範囲)275-284
ページ数10
ジャーナルPhysica D: Nonlinear Phenomena
102
3-4
DOI
出版ステータスPublished - 1997 1月 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 凝縮系物理学
  • 応用数学

フィンガープリント

「Self-organized criticality resulting from minimization of perpetual disequilibration」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル