Semi-supervised End-to-end Speech Recognition Using Text-to-speech and Autoencoders

Shigeki Karita, Shinji Watanabe, Tomoharu Iwata, Marc Delcroix, Atsunori Ogawa, Tomohiro Nakatani

研究成果: Conference contribution

30 被引用数 (Scopus)

抄録

We introduce speech and text autoencoders that share encoders and decoders with an automatic speech recognition (ASR) model to improve ASR performance with large speech only and text only training datasets. To build the speech and text autoencoders, we leverage state-of-the-art ASR and text-to-speech (TTS) encoder decoder architectures. These autoencoders learn features from speech only and text only datasets by switching the encoders and decoders used in the ASR and TTS models. Simultaneously, they aim to encode features to be compatible with ASR and TTS models by a multi-task loss. Additionally, we anticipate that TTS joint training can also improve the ASR performance because both ASR and TTS models learn transformations between speech and text. The experimental result we obtained with our semi-supervised end-to-end ASR/TTS training revealed reductions from a model initially trained with a small paired subset of the LibriSpeech corpus in the character error rate from 10.4% to 8.4% and word error rate from 20.6% to 18.0% by retraining the model with a large unpaired subset of the corpus.

本文言語English
ホスト出版物のタイトル2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ6166-6170
ページ数5
ISBN(電子版)9781479981311
DOI
出版ステータスPublished - 2019 5月
外部発表はい
イベント44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
継続期間: 2019 5月 122019 5月 17

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2019-May
ISSN(印刷版)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
国/地域United Kingdom
CityBrighton
Period19/5/1219/5/17

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Semi-supervised End-to-end Speech Recognition Using Text-to-speech and Autoencoders」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル