Sequential Fish Catch Forecasting Using Bayesian State Space Models

Yuya Kokaki, Naohiro Tawara, Tetsunori Kobayashi, Kazuo Hashimoto, Tetsuji Ogawa

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

A new state space model suitable for fixed shore net fishing is proposed and successfully applied to daily fish catch forecasting. Accurate prediction of daily fish catches makes it possible to support fishery workers with decision-making for efficient operations. For that purpose, the predictive model should be intuitive to the fishery workers and provide an estimate with a confidence. In the present paper, a fish catch forecasting method is developed using a state space model that emulates the process of fixed shore net fishing. In this method, the parameter estimation and prediction are sequentially performed using the Hamiltonian Monte Carlo method. The experimental comparisons using actual fish catch data and public meteorological information demonstrated that the proposed forecasting system yielded significant reductions in predictive errors over the systems based on decision-trees and legacy state-space models.

本文言語English
ホスト出版物のタイトル2018 24th International Conference on Pattern Recognition, ICPR 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ776-781
ページ数6
ISBN(電子版)9781538637883
DOI
出版ステータスPublished - 2018 11月 26
イベント24th International Conference on Pattern Recognition, ICPR 2018 - Beijing, China
継続期間: 2018 8月 202018 8月 24

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
2018-August
ISSN(印刷版)1051-4651

Other

Other24th International Conference on Pattern Recognition, ICPR 2018
国/地域China
CityBeijing
Period18/8/2018/8/24

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Sequential Fish Catch Forecasting Using Bayesian State Space Models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル