SGD for robot motion? the effectiveness of stochastic optimization on a new benchmark for biped locomotion tasks

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Trajectory optimization and posture generation are hard problems in robot locomotion, which can be nonconvex and have multiple local optima. Progress on these problems is further hindered by a lack of open benchmarks, since comparisons of different solutions are difficult to make. In this paper we introduce a new benchmark for trajectory optimization and posture generation of legged robots, using a pre-defined scenario, robot and constraints, as well as evaluation criteria. We evaluate state-of-The-Art trajectory optimization algorithms based on sequential quadratic programming (SQP) on the benchmark, as well as new stochastic and incremental optimization methods borrowed from the large-scale machine learning literature. Interestingly we show that some of these stochastic and incremental methods, which are based on stochastic gradient descent (SGD), achieve higher success rates than SQP on tough initializations. Inspired by this observation we also propose a new incremental variant of SQP which updates only a random subset of the costs and constraints at each iteration. The algorithm is the best performing in both success rate and convergence speed, improving over SQP by up to 30% in both criteria. The benchmark's resources and a solution evaluation script are made openly available.

本文言語English
ホスト出版物のタイトル2017 IEEE-RAS 17th International Conference on Humanoid Robotics, Humanoids 2017
出版社IEEE Computer Society
ページ39-46
ページ数8
ISBN(電子版)9781538646786
DOI
出版ステータスPublished - 2017 12月 22
イベント17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017 - Birmingham, United Kingdom
継続期間: 2017 11月 152017 11月 17

出版物シリーズ

名前IEEE-RAS International Conference on Humanoid Robots
ISSN(印刷版)2164-0572
ISSN(電子版)2164-0580

Other

Other17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017
国/地域United Kingdom
CityBirmingham
Period17/11/1517/11/17

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ビジョンおよびパターン認識
  • ハードウェアとアーキテクチャ
  • 人間とコンピュータの相互作用
  • 電子工学および電気工学

フィンガープリント

「SGD for robot motion? the effectiveness of stochastic optimization on a new benchmark for biped locomotion tasks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル