Signature of rotors

Mieczysław K. Da̧bkowski*, Makiko Ishiwata, Józef H. Przytycki, Akira Yasuhara

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Rotors were introduced as a generalization of mutation by Anstee, Przytycki and Rolfsen in 1987. In this paper we show that the Tristram-Levine signature is preserved by orientation-preserving rotations. Moreover, we show that any link invariant obtained from the characteristic polynomial of the Goeritz matrix, including the Murasugi-Trotter signature, is not changed by rotations. In 2001, P. Traczyk showed that the Conway polynomials of any pair of orientation-preserving rotants coincide. We show that there is a pair of orientation-reversing rotants with different Conway polynomials.

本文言語English
ページ(範囲)79-97
ページ数19
ジャーナルFundamenta Mathematicae
184
1-3
DOI
出版ステータスPublished - 2004
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Signature of rotors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル