Silylation of layered silicate RUB-51 with SiCl4 and conversion of the silylated derivative to a crystalline microporous material

Yusuke Asakura, Yasuhiro Sakamoto, Kazuyuki Kuroda*

*この研究の対応する著者

研究成果: Article査読

16 被引用数 (Scopus)

抄録

A novel crystalline microporous material is synthesized by silylation of layered silicate RUB-51 with tetrachlorosilane (SiCl4), hydrolysis, and heat treatment for interlayer condensation. One SiCl4 molecule first undergoes ordered silylation with two confronting groups, Si-O- and Si-OH, on the interlayer surfaces of RUB-51 (bidentate silylation). Hydrolysis of the unreacted Si-Cl groups of the immobilized silyl groups by a mixture of H2O and dimethyl sulfoxide (DMSO) affords geminal Si-OH groups on the surfaces without simultaneous interlayer condensation because of intercalation with DMSO. Subsequent heat treatment leads to condensation between neighboring layers, and the condensed material is composed of layers of RUB-51 displaced by a half-unit cell along the a axis. Hydroxyl groups are present after interlayer cross-linking, which is one of the unique features of the method using SiCl4. The obtained sample adsorbs CO2 molecules, while RUB-51 itself without silylation cannot. The amount of adsorbed CO2 on the microporous material is larger than that of CH 4, suggesting the potential of this material as a separation medium between CO2 and CH4. This study indicates that the preparation of microporous materials, using layered silicates as a building block and various silylating agents, is useful for precise design of both porosity and functional groups on pore surfaces, which drastically affect the properties of crystalline microporous materials, including catalytic selectivity and separation capability.

本文言語English
ページ(範囲)3796-3803
ページ数8
ジャーナルChemistry of Materials
26
12
DOI
出版ステータスPublished - 2014 6月 24

ASJC Scopus subject areas

  • 化学 (全般)
  • 化学工学(全般)
  • 材料化学

フィンガープリント

「Silylation of layered silicate RUB-51 with SiCl4 and conversion of the silylated derivative to a crystalline microporous material」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル