抄録
Limited oxygen availability impairs normal body growth, although the underlying mechanisms are not fully understood. In Drosophila, hypoxic responses in the larval fat body (FB) disturb the secretion of insulin-like peptides from the brain, inhibiting body growth. However, the cell-autonomous effects of hypoxia on the insulin-signaling pathway in larval FB have been underexplored. In this study, we aimed to examine the effects of overexpression of Sima, a Drosophila hypoxia-inducible factor-1 (HIF-1) α homolog and a key component of HIF-1 transcription factor essential for hypoxic adaptation, on the insulin-signaling pathway in larval FB. Forced expression of Sima in FB reduced the larval body growth with reduced Akt phosphorylation levels in FB cells and increased hemolymph sugar levels. Sima-mediated growth inhibition was reversed by overexpression of TOR or suppression of FOXO. After Sima overexpression, larvae showed higher expression levels of Tribbles, a negative regulator of Akt activity, and a simultaneous knockdown of Tribbles completely abolished the effects of Sima on larval body growth. Furthermore, a reporter analysis revealed Tribbles as a direct target gene of Sima. These results suggest that Sima in FB evokes Tribbles-mediated insulin resistance and consequently protects against aberrant insulin-dependent larval body growth under hypoxia.
本文言語 | English |
---|---|
ページ(範囲) | 145-151 |
ページ数 | 7 |
ジャーナル | Genes to Cells |
巻 | 27 |
号 | 2 |
DOI | |
出版ステータス | Published - 2022 2月 |
ASJC Scopus subject areas
- 遺伝学
- 細胞生物学