抄録
Predicting entailment between two given texts is an important task upon which the performance of numerous NLP tasks depend on such as question answering, text summarization, and information extraction. The degree to which two texts are similar has been used extensively as a key feature in much previous work in predicting entailment. However, using similarity scores directly, without proper transformations, results in suboptimal performance. Given a set of lexical similarity measures, we propose a method that jointly learns both (a) a set of non-linear transformation functions for those similarity measures and, (b) the optimal non-linear combination of those transformation functions to predict textual entailment. Our method consistently outperforms numerous baselines, reporting a micro-averaged F-score of 46.48 on the RTE-7 benchmark dataset. The proposed method is ranked 2-nd among 33 entailment systems participated in RTE-7, demonstrating its competitiveness over numerous other entailment approaches. Although our method is statistically comparable to the current state-of-the-art, we require less external knowledge resources.
本文言語 | English |
---|---|
ホスト出版物のタイトル | Proceedings of the National Conference on Artificial Intelligence |
ページ | 1720-1726 |
ページ数 | 7 |
巻 | 2 |
出版ステータス | Published - 2012 |
外部発表 | はい |
イベント | 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12 - Toronto, ON 継続期間: 2012 7月 22 → 2012 7月 26 |
Other
Other | 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12 |
---|---|
City | Toronto, ON |
Period | 12/7/22 → 12/7/26 |
ASJC Scopus subject areas
- ソフトウェア
- 人工知能