Simulating quantum transport with ultracold atoms and interaction effects

Sho Nakada, Shun Uchino, Yusuke Nishida

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Quantum transport can be simulated with ultracold atoms by employing spin superpositions of fermions interacting with spin-dependent potentials. Here we first extend this scheme to an arbitrary number of spin components so as to allow simulating transport through a multiterminal quantum dot and derive a current formula in terms of a spin rotation matrix and potential phase shifts. We then show that a Fano resonance manifests itself in measuring a linear conductance at zero temperature in the case of two spin components. We also study how a weak interparticle interaction in bulk affects quantum transport in one dimension with the bosonization and renormalization techniques. In particular, we find that the conductance vanishes for an attractive interaction due to a bulk spin gap, while it is enhanced for a repulsive interaction by a power law with lowering the temperature or the chemical potential difference.

本文言語English
論文番号031302
ジャーナルPhysical Review A
102
3
DOI
出版ステータスPublished - 2020 9月
外部発表はい

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Simulating quantum transport with ultracold atoms and interaction effects」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル