Single Camera Face Position-Invariant Driver’s Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks

Catherine Lollett*, Mitsuhiro Kamezaki, Shigeki Sugano

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

Estimating the driver’s gaze in a natural real-world setting can be problematic for different challenging scenario conditions. For example, faces will undergo facial occlusions, illumination, or various face positions while driving. In this effort, we aim to reduce misclassifications in driving situations when the driver has different face distances regarding the camera. Three-dimensional Convolutional Neural Networks (CNN) models can make a spatio-temporal driver’s representation that extracts features encoded in multiple adjacent frames that can describe motions. This characteristic may help ease the deficiencies of a per-frame recognition system due to the lack of context information. For example, the front, navigator, right window, left window, back mirror, and speed meter are part of the known common areas to be checked by drivers. Based on this, we implement and evaluate a model that is able to detect the head direction toward these regions having various distances from the camera. In our evaluation, the 2D CNN model had a mean average recall of 74.96% across the three models, whereas the 3D CNN model had a mean average recall of 87.02%. This result show that our proposed 3D CNN-based approach outperforms a 2D CNN per-frame recognition approach in driving situations when the driver’s face has different distances from the camera.

本文言語English
論文番号5857
ジャーナルSensors
22
15
DOI
出版ステータスPublished - 2022 8月

ASJC Scopus subject areas

  • 分析化学
  • 情報システム
  • 原子分子物理学および光学
  • 生化学
  • 器械工学
  • 電子工学および電気工学

フィンガープリント

「Single Camera Face Position-Invariant Driver’s Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル