Single-trial magnetoencephalographic data decomposition and localization based on independent component analysis approach

Jianting Cao*, Noboru Murata, Shun Ichi Amari, Andrzej Cichocki, Tsunehiro Takeda, Hiroshi Endo, Nobuyoshi Harada

*この研究の対応する著者

研究成果: Article査読

14 被引用数 (Scopus)

抄録

Magnetoencephalography (MEG) is a powerful and non-invasive technique for measuring human brain activity with a high temporal resolution. The motivation for studying MEG data analysis is to extract the essential features from measured data and represent them corresponding to the human brain functions. In this paper, a novel MEG data analysis method based on independent component analysis (ICA) approach with pre-processing and post-processing multistage procedures is proposed. Moreover, several kinds of ICA algorithms are investigated for analyzing MEG single-trial data which is recorded in the experiment of phantom. The analyzed results are presented to illustrate the effectiveness and high performance both in source decomposition by ICA approaches and source localization by equivalent current dipoles fitting method.

本文言語English
ページ(範囲)1757-1765
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E83-A
9
出版ステータスPublished - 2000
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Single-trial magnetoencephalographic data decomposition and localization based on independent component analysis approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル