Site-specific Gordian distances of spatial graphs

Kouki Taniyama*

*この研究の対応する著者

研究成果: Article査読

抄録

A site-specific Gordian distance between two spatial embeddings of an abstract graph is the minimal number of crossing changes from one to another where each crossing change is performed between two previously specified abstract edges of the graph. It is infinite in some cases. We determine the site-specific Gordian distance between two spatial embeddings of an abstract graph in certain cases. It has an application to puzzle ring problem. The site-specific Gordian distances between Milnor links and trivial links are determined. We use covering space theory for the proofs.

本文言語English
論文番号2141016
ジャーナルJournal of Knot Theory and its Ramifications
30
14
DOI
出版ステータスPublished - 2021 12月 1

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Site-specific Gordian distances of spatial graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル