Slow-cycling cancer stem cells regulate progression and chemoresistance in colon cancer

Daisuke Shiokawa, Hiroaki Sakai, Hirokazu Ohata, Toshiaki Miyazaki, Yusuke Kanda, Shigeki Sekine, Daichi Narushima, Masahito Hosokawa, Mamoru Kato, Yutaka Suzuki, Haruko Takeyama, Hideki Kambara, Hitoshi Nakagama, Koji Okamoto*


研究成果: Article査読

41 被引用数 (Scopus)


Cancer chemoresistance is often attributed to the presence of cancer stem cell (CSC)-like cells, but whether they are homogeneously chemoresistant remains unclear. We previously showed that in colon tumors, a subpopulation of LGR5þ CSC-like cells driven by TCF1 (TCF7), a Wnt-responsive transcription factor, were responsible for tumorigenicity. Here we demonstrate that the tumorigenic subpopulation of mouse LGR5þ cells exists in a slow-cycling state and identify a unique 22-gene signature that characterizes these slow-cycling CSC. Seven of the signature genes are specifically expressed in slow-cycling LGR5þ cells from xenografted human colon tumors and are upregulated in colon cancer clinical specimens. Among these seven, four genes (APCDD1, NOTUM, PROX1, and SP5) are known to be direct Wnt target genes, and PROX1 was expressed in the invasive fronts of colon tumors. PROX1 was activated by TCF1 to induce CDKN1C and maintain a slow-cycling state in colon cancer organoids. Strikingly, PROX1 was required for recurrent growth after chemotherapeutic treatment, suggesting that inhibition of slow-cycling CSC by targeting the TCF1-PROX1-CDKN1C pathway is an effective strategy to combat refractory colon cancer in combination with conventional chemotherapy.

ジャーナルCancer Research
出版ステータスPublished - 2021 10月 15

ASJC Scopus subject areas

  • 腫瘍学
  • 癌研究


「Slow-cycling cancer stem cells regulate progression and chemoresistance in colon cancer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。