Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation

Shuji Machihara*, Kenji Nakanishi, Tohru Ozawa

*この研究の対応する著者

研究成果: Article査読

51 被引用数 (Scopus)

抄録

In this paper we study the Cauchy problem for the nonlinear Dirac equation in the Sobolev space Hs. We prove the existence and uniqueness of global solutions for small data in Hs with s > 1. The method of proof is based on the Strichartz estimate of Lt2 type for Dirac and Klein-Gordon equations. We also prove that the solutions of the nonlinear Dirac equation after modulation of phase converge to the corresponding solutions of the nonlinear Schrödinger equation as the speed of light tends to infinity.

本文言語English
ページ(範囲)179-194
ページ数16
ジャーナルRevista Matematica Iberoamericana
19
1
DOI
出版ステータスPublished - 2003
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル