Solomon–Terao algebra of hyperplane arrangements

Takuro Abe, Toshiaki Maeno, Satoshi Murai, Yasuhide Numata

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We introduce a new algebra associated with a hyperplane arrangement A, called the Solomon–Terao algebra ST(A, η), where η is a homogeneous polynomial. It is shown by Solomon and Terao that ST(A, η) is Artinian when η is generic. This algebra can be considered as a generalization of coinvariant algebras in the setting of hyperplane arrangements. The class of Solomon–Terao algebras contains cohomology rings of regular nilpotent Hessenberg varieties. We show that ST(A, η) is a complete intersection if and only if A is free. We also give a factorization formula of the Hilbert polynomials of ST(A, η) when A is free, and pose several related questions, problems and conjectures.

本文言語English
ページ(範囲)1027-1047
ページ数21
ジャーナルJournal of the Mathematical Society of Japan
71
4
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Solomon–Terao algebra of hyperplane arrangements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル