SOME SUPERCONVERGENCE FOR A GALERKIN METHOD BY AVERAGING GRADIENTS IN ONE DIMENSIONAL PROBLEMS.

Mitsuhiro T. Nakao*

*この研究の対応する著者

研究成果: Article査読

抄録

We consider some superconvergence phenomena followed by the averaging gradients in a Galerkin method for two point boundary value problems using continuous piecewise polynomials. It is shown that several a posteriori methods based on the averaging procedures yield superconvergent approximations to the exact solution and its derivative with one order better rates of convergence than the optimal rates. The special emphasis of the paper is the fact that the superconvergence phenomena only occur in cases using odd degree polynomials. We describe the extension of the results to the parabolic problems in a single space variable.

本文言語English
ページ(範囲)130-134
ページ数5
ジャーナルJournal of Information Processing
9
3
出版ステータスPublished - 1986
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「SOME SUPERCONVERGENCE FOR A GALERKIN METHOD BY AVERAGING GRADIENTS IN ONE DIMENSIONAL PROBLEMS.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル