TY - JOUR
T1 - Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution
AU - Mamun, Abdullah Al
AU - Morita, Masao
AU - Matsuoka, Mitsuaki
AU - Tokoro, Chiharu
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - Hexavalent chromium (Cr(VI)) attracted researchers’ interest for its toxicity, natural availability and removal difficulty. Nevertheless, its sorption mechanism is not clearly understood yet. In this work, we elucidated the sorption mechanism of the co-precipitation of chromates with ferrihydrite through quantitative analysis. The influence of Cr/Fe molar ratio on sorption was investigated by zeta potential measurements, X-ray diffraction (XRD) and X-ray adsorption fine-structure analysis (XAFS). Coprecipitation at pH 5 showed almost twice the sorption density of adsorption at pH 5. In co-precipitation, a shift of the XRD peak due to inner-sphere sorption of chromate was observed at Cr/Fe molar ratio 0.5. For adsorption, the same peak shift was confirmed at Cr/Fe molar ratio of 1. Zeta potential at pH 5 suggested that the sorption mechanism changed at Cr/Fe molar ratio 0.25 for coprecipitation and at Cr/Fe molar ratio of 1 for adsorption. Fitting of Cr and Fe K-edge extended X-ray adsorption fine-structure suggested that ferrihydrite immobilized Cr(VI) via outer sphere surface complexation for lower Cr/Fe ratios and via inner-sphere surface complexation for higher molar ratios. At higher molar ratios, bidentate binuclear Cr[sbnd]Fe bonds were well established, thus resulting in the expansion of the ferrihydrite structure.
AB - Hexavalent chromium (Cr(VI)) attracted researchers’ interest for its toxicity, natural availability and removal difficulty. Nevertheless, its sorption mechanism is not clearly understood yet. In this work, we elucidated the sorption mechanism of the co-precipitation of chromates with ferrihydrite through quantitative analysis. The influence of Cr/Fe molar ratio on sorption was investigated by zeta potential measurements, X-ray diffraction (XRD) and X-ray adsorption fine-structure analysis (XAFS). Coprecipitation at pH 5 showed almost twice the sorption density of adsorption at pH 5. In co-precipitation, a shift of the XRD peak due to inner-sphere sorption of chromate was observed at Cr/Fe molar ratio 0.5. For adsorption, the same peak shift was confirmed at Cr/Fe molar ratio of 1. Zeta potential at pH 5 suggested that the sorption mechanism changed at Cr/Fe molar ratio 0.25 for coprecipitation and at Cr/Fe molar ratio of 1 for adsorption. Fitting of Cr and Fe K-edge extended X-ray adsorption fine-structure suggested that ferrihydrite immobilized Cr(VI) via outer sphere surface complexation for lower Cr/Fe ratios and via inner-sphere surface complexation for higher molar ratios. At higher molar ratios, bidentate binuclear Cr[sbnd]Fe bonds were well established, thus resulting in the expansion of the ferrihydrite structure.
KW - Chromate
KW - Coprecipitation
KW - Extended X-ray absorption fine structure
KW - Ferrihydrite
KW - Inner sphere
UR - http://www.scopus.com/inward/record.url?scp=85017209326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017209326&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2017.03.058
DO - 10.1016/j.jhazmat.2017.03.058
M3 - Article
C2 - 28407541
AN - SCOPUS:85017209326
SN - 0304-3894
VL - 334
SP - 142
EP - 149
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
ER -