Speaker verification-based evaluation of single-channel speech separation

Matthew Maciejewski, Shinji Watanabe, Sanjeev Khudanpur

研究成果: Conference contribution

抄録

Speech enhancement techniques typically focus on intrinsic metrics of signal quality. The overwhelming majority of deep learning-based single-channel speech separation studies, for instance, have relied on a single class of metrics to evaluate the systems by. These metrics, usually variants of Signal-to-Distortion Ratio (SDR), measure fidelity to the “ground truth” waveform. This can be problematic, not only for lack of diversity in evaluation metrics, but also in cases where a perfect ground truth waveform may be unavailable. In this work, we explore the value of speaker verification as an extrinsic metric of separation quality, with additional utility as evidence of the benefits of separation as pre-processing for downstream tasks.

本文言語English
ホスト出版物のタイトル22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
出版社International Speech Communication Association
ページ2353-2357
ページ数5
ISBN(電子版)9781713836902
DOI
出版ステータスPublished - 2021
外部発表はい
イベント22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, Czech Republic
継続期間: 2021 8月 302021 9月 3

出版物シリーズ

名前Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
3
ISSN(印刷版)2308-457X
ISSN(電子版)1990-9772

Conference

Conference22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
国/地域Czech Republic
CityBrno
Period21/8/3021/9/3

ASJC Scopus subject areas

  • 言語および言語学
  • 人間とコンピュータの相互作用
  • 信号処理
  • ソフトウェア
  • モデリングとシミュレーション

フィンガープリント

「Speaker verification-based evaluation of single-channel speech separation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル