Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system

Takafumi Sekine, Takao Tsuji, Tsutomu Oyama, Frederic Magoules, Kenko Uchida

    研究成果: Conference contribution

    2 被引用数 (Scopus)

    抄録

    Long computation time is required for transient stability analysis of power systems because it can be expressed as combination of differential and algebraic equations. In order to finish the calculation within a practical amount of time, it is an effective approach that applying Parareal method as one of parallel computing technique to transient stability analysis. In the Parareal method, the accuracy of the result is gradually updated through iterative procedures in combination with rough estimation of entire waveform and detailed calculation for each decomposed time window. Based on the Parareal method, the authors have developed a new stability assessment method by using chaos theory. If an operating point is in unstable region, the trajectory has the chaotic property, 'sensitive dependence on initial conditions'. Therefore, it is possible to assess the stability by detecting the convergence characteristics of the estimated waveform at each iterative procedure by the Parareal method. The effectiveness of the proposed method was tested by using IEEJ WEST10 system model.

    本文言語English
    ホスト出版物のタイトル2016 IEEE Innovative Smart Grid Technologies - Asia, ISGT-Asia 2016
    出版社IEEE Computer Society
    ページ1177-1182
    ページ数6
    ISBN(電子版)9781509043033
    DOI
    出版ステータスPublished - 2016 12月 22
    イベント2016 IEEE Innovative Smart Grid Technologies - Asia, ISGT-Asia 2016 - Melbourne, Australia
    継続期間: 2016 11月 282016 12月 1

    Other

    Other2016 IEEE Innovative Smart Grid Technologies - Asia, ISGT-Asia 2016
    国/地域Australia
    CityMelbourne
    Period16/11/2816/12/1

    ASJC Scopus subject areas

    • コンピュータ ネットワークおよび通信
    • 情報システム

    フィンガープリント

    「Speedup of parallel computing by parareal method in transient stability analysis of Japanese power system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル