Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary

Yuki Kaneko, Hiroshi Matsuzawa*

*この研究の対応する著者

    研究成果: Article査読

    10 被引用数 (Scopus)

    抄録

    We will study a free boundary problem of the nonlinear diffusion equations of the form ut=uxx+f(u),t>0,ct<x<h(t), where f is C1 function satisfying f(0)=0, c>0 is a given constant and h(t) is a free boundary which is determined by a Stefan-like condition. This model may be used to describe the spreading of a new or invasive species with population density u(t,x) over a one dimensional habitat. The free boundary x=h(t) represents the spreading front. In this model, we impose zero Dirichlet boundary condition at left moving boundary x=ct. This means that the left boundary of the habitat is a very hostile environment for the species and that the habitat is eroded away by the left moving boundary at constant speed c. In this paper we will extend the results of a trichotomy result obtained in [23] to general monostable, bistable and combustion types of nonlinearities. We show that the long-time dynamical behavior of solutions can be expressed by unified fashion, that is, for any initial data, the unique solution exhibits exactly one of the behaviors, spreading, vanishing and transition. We also give the asymptotic profile of the solution over the whole domain when spreading happens. The approach here is quite different from that used in [23].

    本文言語English
    ページ(範囲)1000-1043
    ページ数44
    ジャーナルJournal of Differential Equations
    265
    3
    DOI
    出版ステータスPublished - 2018 8月 5

    ASJC Scopus subject areas

    • 分析

    フィンガープリント

    「Spreading and vanishing in a free boundary problem for nonlinear diffusion equations with a given forced moving boundary」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル