Stability and hopf bifurcation of coexistence steady-states to an skt model in spatially heterogeneous environment

Kousuke Kuto*

*この研究の対応する著者

研究成果: Article査読

13 被引用数 (Scopus)

抄録

This paper is concerned with the following Lotka-Volterra cross-diffusion system ? in a bounded domain ω ⊂ RN with Neumann boundary conditions ∂vu = ∂vv = 0 on ∂ω. In the previous paper [18], the author has proved that the set of positive stationary solutions forms a fishhook shaped branch ⌈ under a segregation of p(x) and d(x). In the present paper, we give some criteria on the stability of solutions on ⌈. We prove that the stability of solutions changes only at every turning point of ⌈ if ? is large enough. In a different case that c(x) > 0 is large enough, we find a parameter range such that multiple Hopf bifurcation points appear on ⌈.

本文言語English
ページ(範囲)489-509
ページ数21
ジャーナルDiscrete and Continuous Dynamical Systems
24
2
DOI
出版ステータスPublished - 2009 6月
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Stability and hopf bifurcation of coexistence steady-states to an skt model in spatially heterogeneous environment」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル