Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms

Zhen Qing Chen, Takashi Kumagai, Jian Wang

研究成果: Article査読

13 被引用数 (Scopus)

抄録

In this paper, we establish stability of parabolic Harnack inequalities for symmetric nonlocal Dirichlet forms on metric measure spaces under a general volume doubling condition. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cutoff Sobolev inequalities, and Poincaré inequalities. In particular, we establish the connection between parabolic Harnack inequalities and two-sided heat kernel estimates, as well as with the Hölder regularity of parabolic functions for symmetric non-local Dirichlet forms.

本文言語English
ページ(範囲)3747-3803
ページ数57
ジャーナルJournal of the European Mathematical Society
22
11
DOI
出版ステータスPublished - 2020
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル