Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space

Yoshihiro Ueda*, Shuichi Kawashima

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this paper we discuss the asymptotic stability of stationary solutions for the non-isentropic Euler-Maxwell system in R3. It is known in the authors’ previous works [17, 18, 19] that the Euler-Maxwell system verifies the decay property of the regularity-loss type. In this paper we first prove the existence and uniqueness of a small stationary solution. Then we show that the non-stationary problemhas a global solution in a neighborhood of the stationary solution under smallness condition on the initial perturbation. Moreover, we show the asymptotic convergence of the solution toward the stationary solution as time tends to infinity. The crucial point of the proof is to derive a priori estimates by using the energy method.

本文言語English
ページ(範囲)787-797
ページ数11
ジャーナルBulletin of the Brazilian Mathematical Society
47
2
DOI
出版ステータスPublished - 2016 6月 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル