抄録
In this paper we discuss the asymptotic stability of stationary solutions for the non-isentropic Euler-Maxwell system in R3. It is known in the authors’ previous works [17, 18, 19] that the Euler-Maxwell system verifies the decay property of the regularity-loss type. In this paper we first prove the existence and uniqueness of a small stationary solution. Then we show that the non-stationary problemhas a global solution in a neighborhood of the stationary solution under smallness condition on the initial perturbation. Moreover, we show the asymptotic convergence of the solution toward the stationary solution as time tends to infinity. The crucial point of the proof is to derive a priori estimates by using the energy method.
本文言語 | English |
---|---|
ページ(範囲) | 787-797 |
ページ数 | 11 |
ジャーナル | Bulletin of the Brazilian Mathematical Society |
巻 | 47 |
号 | 2 |
DOI | |
出版ステータス | Published - 2016 6月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)