State transitions by molecules

Kensaku Sakamoto, Daisuke Kiga, Ken Komiya, Hidetaka Gouzu, Shigeyuki Yokoyama, Shuji Ikeda, Hiroshi Sugiyama, Masami Hagiya*

*この研究の対応する著者

研究成果: Article査読

72 被引用数 (Scopus)

抄録

In our previous paper, we described a method by which a state machine is implemented by a single-stranded DNA molecule whose 3'-end sequence encodes the current state of the machine. Successive state transitions are performed in such a way that the current state is annealed onto an appropriate portion of DNA encoding the transition table of the state machine and the next state is copied to the 3'-end by extension with polymerase. In this paper, we first show that combined with parallel overlap assembly, a single series of successive transitions can solve NP-complete problems. This means that the number of necessary laboratory steps is independent from the problem size. We then report the results of two experiments concerning the implementation of our method. One is on isothermal reactions which greatly increase the efficiency of state transitions compared with reactions controlled by thermal cycles. The other is on the use of unnatural bases for avoiding out-of-frame annealing. The latter result can also be applied to many DNA-based computing paradigms.

本文言語English
ページ(範囲)81-91
ページ数11
ジャーナルBioSystems
52
1-3
DOI
出版ステータスPublished - 1999 10月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 応用数学

フィンガープリント

「State transitions by molecules」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル