抄録
This paper discusses the asymptotic efficiency of estimators for optimal portfolios when returns are vector-valued non-Gaussian stationary processes. We give the asymptotic distribution of portfolio estimators ĝ for non-Gaussian dependent return processes. Next we address the problem of asymptotic efficiency for the class of estimators ĝ. First, it is shown that there are some cases when the asymptotic variance of ĝ under non-Gaussianity can be smaller than that under Gaussianity. The result shows that non-Gaussianity of the returns does not always affect the efficiency badly. Second, we give a necessary and sufficient condition for ĝ to be asymptotically efficient when the return process is Gaussian, which shows that ĝ is not asymptotically efficient generally. From this point of view we propose to use maximum likelihood type estimators for g, which are asymptotically efficient. Furthermore, we investigate the problem of predicting the one-step-ahead optimal portfolio return by the estimated portfolio based on ĝ and examine the mean squares prediction error.
本文言語 | English |
---|---|
ページ(範囲) | 193-215 |
ページ数 | 23 |
ジャーナル | Journal of Forecasting |
巻 | 27 |
号 | 3 |
DOI | |
出版ステータス | Published - 2008 4月 |
外部発表 | はい |
ASJC Scopus subject areas
- モデリングとシミュレーション
- コンピュータ サイエンスの応用
- 戦略と経営
- 統計学、確率および不確実性
- 経営科学およびオペレーションズ リサーチ