Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an In Vitro motility assay

Hidetake Miyata, Hiroyuki Hakozaki, Hiroshi Yoshikawa, Naoya Suzuki, Kazuhiko Kinosita*, Takayuki Nishizaka, Shin'ichi Ishiwata

*この研究の対応する著者

研究成果: Article査読

54 被引用数 (Scopus)

抄録

In order to determine the relative motions of an actin filament and a myosin molecule upon hydrolysis of one ATP, an in vitro motility assay, in which individual actin filaments slide over heavy meromyosin molecules bound to a substrate, was combined with an optical trapping technique. An actin filament, attached to a gelsolin-coated bead, was captured with an optical trap. The surface-bound heavy meromyosin molecules pulled the filament against the trapping force, which resulted in back and forth motions of the actin-bound bead. The number of heavy meromyosin molecules interacting with an actin filament (at most 1/ μm filament) and the ATP concentration (≤0.5 μM) were chosen so as to facilitate detection of each "pull." Calculation of the centroid of the bead image revealed abrupt displacements of the actin filament. The frequency of such displacements was between 0.05 and 0.1 per 1 s per 1μm actin filament, being consistent with calculated values based on the reported bimolecular binding constants of ATP and the actomyosin rigor complex. The distribution of the displacements peaked around 7 nm at a trapping force of 0.016 pN/nm, but it became broader, and some displacements were as large as 30 nm, when the trapping force was reduced to 0.0063 pN/nm, suggesting that the force generation due to the structural change of a myosin head may be insufficient to explain such displacements.

本文言語English
ページ(範囲)644-647
ページ数4
ジャーナルJournal of Biochemistry
115
4
出版ステータスPublished - 1994 4月
外部発表はい

ASJC Scopus subject areas

  • 統計学、確率および不確実性
  • 応用数学
  • 生理学(医学)
  • 放射線学、核医学およびイメージング
  • 分子生物学
  • 生化学

フィンガープリント

「Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an In Vitro motility assay」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル