Stochastic Model of Block Segmentation Based on Improper Quadtree and Optimal Code under the Bayes Criterion †

Yuta Nakahara*, Toshiyasu Matsushima

*この研究の対応する著者

研究成果: Article査読

抄録

Most previous studies on lossless image compression have focused on improving preprocessing functions to reduce the redundancy of pixel values in real images. However, we assumed stochastic generative models directly on pixel values and focused on achieving the theoretical limit of the assumed models. In this study, we proposed a stochastic model based on improper quadtrees. We theoretically derive the optimal code for the proposed model under the Bayes criterion. In general, Bayes-optimal codes require an exponential order of calculation with respect to the data lengths. However, we propose an algorithm that takes a polynomial order of calculation without losing optimality by assuming a novel prior distribution.

本文言語English
論文番号1152
ジャーナルEntropy
24
8
DOI
出版ステータスPublished - 2022 8月

ASJC Scopus subject areas

  • 情報システム
  • 数理物理学
  • 物理学および天文学(その他)
  • 電子工学および電気工学

フィンガープリント

「Stochastic Model of Block Segmentation Based on Improper Quadtree and Optimal Code under the Bayes Criterion †」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル