Stochastic Model of Block Segmentation Based on Improper Quadtree and Optimal Code under the Bayes Criterion

Yuta Nakahara*, Toshiyasu Matsushima

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Most previous studies on lossless image compression have focused on improving preprocessing functions to reduce the redundancy of pixel values in real images. However, we assumed stochastic generative models directly on pixel values and focused on achieving the theoretical limit of the assumed models. In this study, we proposed a stochastic model based on improper quadtrees. We theoretically derive the optimal code for the proposed model under the Bayes criterion. In general, Bayes-optimal codes require an exponential order of calculation with respect to the data lengths. However, we propose an efficient algorithm that takes a polynomial order of calculation without losing optimality by assuming a novel prior distribution.

本文言語English
ホスト出版物のタイトルProceedings - DCC 2022
ホスト出版物のサブタイトル2022 Data Compression Conference
編集者Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagrista, James A. Storer
出版社Institute of Electrical and Electronics Engineers Inc.
ページ153-162
ページ数10
ISBN(電子版)9781665478939
DOI
出版ステータスPublished - 2022
イベント2022 Data Compression Conference, DCC 2022 - Snowbird, United States
継続期間: 2022 3月 222022 3月 25

出版物シリーズ

名前Data Compression Conference Proceedings
2022-March
ISSN(印刷版)1068-0314

Conference

Conference2022 Data Compression Conference, DCC 2022
国/地域United States
CitySnowbird
Period22/3/2222/3/25

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信

フィンガープリント

「Stochastic Model of Block Segmentation Based on Improper Quadtree and Optimal Code under the Bayes Criterion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル