Stochastic quantization of bottomless systems - Stationary quantities in a diffusive process

Kazuya Yuasa*, Hiromichi Nakazato

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

By making use of the Langevin equation with a kernel, it was shown that the Feynman measure e-s can be realized in a restricted sense in a diffusive stochastic process, which diverges and has no equilibrium, for bottomless systems. In this paper, the dependence on the initial conditions and the temporal behavior are analyzed for 0-dim bottomless systems. Furthermore, it is shown that it is possible to find stationary quantities.

本文言語English
ページ(範囲)719-727
ページ数9
ジャーナルProgress of Theoretical Physics
102
4
DOI
出版ステータスPublished - 1999 10月

ASJC Scopus subject areas

  • 物理学および天文学(その他)

フィンガープリント

「Stochastic quantization of bottomless systems - Stationary quantities in a diffusive process」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル