抄録
Consider the stochastic Navier-Stokes-Coriolis equations in T2 × (0, b) subject to Dirichlet boundary conditions as well as the Ekman spiral which is a stationary solution to the deterministic equations. It is proved that the stochastic Navier-Stokes-Coriolis equation admits a weak martingale solution. Moreover, as an stochastic analogue of the existing deterministic stability results for the Ekman spiral, stochastic stability of the Ekman spiral is proved by considering stationary martingale solutions.
本文言語 | English |
---|---|
ページ(範囲) | 189-208 |
ページ数 | 20 |
ジャーナル | Annali della Scuola Normale - Classe di Scienze |
巻 | 12 |
号 | 1 |
出版ステータス | Published - 2013 |
外部発表 | はい |
ASJC Scopus subject areas
- 理論的コンピュータサイエンス
- 数学(その他)