Stokes semigroups, strong,weak, and very weak solutions for general domains

Reinhard Farwig*, Hideo Kozono, Hermann Sohr


研究成果: Chapter

4 被引用数 (Scopus)


To solve the (Navier-)Stokes equations in general smooth domains Ως R n , the spaces ~L q (Ω) defined as L q nL 2 when 2 ≤ q < ∞ and L q +L 2 when1 < q < 2 have shown to be a successful strategy. First, the main properties of the spaces ~L q (Ω) and related concepts for solenoidal subspaces, Sobolev spaces, Bochner spaces, and the corresponding Helmholtz projection and Stokes operator will be discussed. Then these concepts are used to construct and analyze very weak, weak, mild, and strong solutions to the instationary (Navier-)Stokes equations in general domains. In particular, the strategy allows to find weak solutions of the (Navier-)Stokes system satisfying the localized energy inequality and the strong energy inequality which are important in the context of Leray structure theorem and partial regularity results.

ホスト出版物のタイトルHandbook of Mathematical Analysis in Mechanics of Viscous Fluids
出版社Springer International Publishing
出版ステータスPublished - 2018 4月 19

ASJC Scopus subject areas

  • 数学一般
  • 物理学および天文学一般
  • 工学一般


「Stokes semigroups, strong,weak, and very weak solutions for general domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。