Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree

M. T. Barlow*, D. A. Croydon, T. Kumagai

*この研究の対応する著者

研究成果: Article査読

12 被引用数 (Scopus)

抄録

The first main result of this paper is that the law of the (rescaled) twodimensional uniform spanning tree is tight in a space whose elements are measured, rooted real trees continuously embedded into Euclidean space. Various properties of the intrinsic metrics, measures and embeddings of the subsequential limits in this space are obtained, with it being proved in particular that the Hausdorff dimension of any limit in its intrinsic metric is almost surely equal to 8/5. In addition, the tightness result is applied to deduce that the annealed law of the simple random walk on the two-dimensional uniform spanning tree is tight under a suitable rescaling. For the limiting processes, which are diffusions on random real trees embedded into Euclidean space, detailed transition density estimates are derived.

本文言語English
ページ(範囲)4-55
ページ数52
ジャーナルAnnals of Probability
45
1
DOI
出版ステータスPublished - 2017
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Subsequential scaling limits of simple random walk on the two-dimensional uniform spanning tree」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル