TY - JOUR
T1 - Successional changes in the soil microbial community along a vegetation development sequence in a subalpine volcanic desert on Mount Fuji, Japan
AU - Yoshitake, Shinpei
AU - Fujiyoshi, Masaaki
AU - Watanabe, Kenichi
AU - Masuzawa, Takehiro
AU - Nakatsubo, Takayuki
AU - Koizumi, Hiroshi
N1 - Funding Information:
Acknowledgements We thank Dr N. Sakurai of Hiroshima University for providing the laboratory facilities. The comments from the editor and four anonymous reviewers greatly improved the manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.
PY - 2013/3
Y1 - 2013/3
N2 - Aims: To study the relationship between vegetation development and changes in the soil microbial community during primary succession in a volcanic desert, we examined successional changes in microbial respiration, biomass, and community structure in a volcanic desert on Mount Fuji, Japan. Methods: Soil samples were collected from six successional stages, including isolated island-like plant communities. We measured microbial respiration and performed phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE) analysis, and community-level physiological profile (CLPP) analysis using Biolog microplates. Results: Microbial biomass (total PLFA content) increased during plant succession and was positively correlated with soil properties including soil water and soil organic matter (SOM) contents. The microbial respiration rate per unit biomass decreased during succession. Nonmetric multidimensional scaling based on the PLFA, DGGE, and CLPP analyses showed a substantial shift in microbial community structure as a result of initial colonization by the pioneer herb Polygonum cuspidatum and subsequent colonization by Larix kaempferi into central areas of island-like communities. These shifts in microbial community structure probably reflect differences in SOM quality. Conclusions: Microbial succession in the volcanic desert of Mt. Fuji was initially strongly affected by colonization of the pioneer herbaceous plant (P. cuspidatum) associated with substantial changes in the soil environment. Subsequent changes in vegetation, including the invasion of shrubs such as L. kaempferi, also affected the microbial community structure.
AB - Aims: To study the relationship between vegetation development and changes in the soil microbial community during primary succession in a volcanic desert, we examined successional changes in microbial respiration, biomass, and community structure in a volcanic desert on Mount Fuji, Japan. Methods: Soil samples were collected from six successional stages, including isolated island-like plant communities. We measured microbial respiration and performed phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE) analysis, and community-level physiological profile (CLPP) analysis using Biolog microplates. Results: Microbial biomass (total PLFA content) increased during plant succession and was positively correlated with soil properties including soil water and soil organic matter (SOM) contents. The microbial respiration rate per unit biomass decreased during succession. Nonmetric multidimensional scaling based on the PLFA, DGGE, and CLPP analyses showed a substantial shift in microbial community structure as a result of initial colonization by the pioneer herb Polygonum cuspidatum and subsequent colonization by Larix kaempferi into central areas of island-like communities. These shifts in microbial community structure probably reflect differences in SOM quality. Conclusions: Microbial succession in the volcanic desert of Mt. Fuji was initially strongly affected by colonization of the pioneer herbaceous plant (P. cuspidatum) associated with substantial changes in the soil environment. Subsequent changes in vegetation, including the invasion of shrubs such as L. kaempferi, also affected the microbial community structure.
KW - Island-like plant community
KW - Microbial biomass
KW - Microbial community structure
KW - Primary succession
KW - Volcanic desert
UR - http://www.scopus.com/inward/record.url?scp=84873723558&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873723558&partnerID=8YFLogxK
U2 - 10.1007/s11104-012-1348-7
DO - 10.1007/s11104-012-1348-7
M3 - Article
AN - SCOPUS:84873723558
SN - 0032-079X
VL - 364
SP - 261
EP - 272
JO - Plant and Soil
JF - Plant and Soil
IS - 1-2
ER -